WHAT IS NEUROFEEDBACK?
Neurofeedback is a form of brain training that is also called neurobiofeedback, neurotherapy, and EEG biofeedback.
Neurofeedback training is a widely used term but at its core it is a feedback system to let the individual use changes in brain wave activity as a source of feedback to potentially improve health and wellness.
Keep reading below to learn more about how it works, the different systems, and its benefits.
What is Neurofeedback and How Does NeurOptimal Neurofeedback Training Work? Watch our video >
Table of Contents
Read straight through, or jump to the section you want to read:
Definition of Neurofeedback
The term neurofeedback is broadly defined as any technique that aims to alter brain activity by making it perceptible to the senses in real time. This is often achieved by recording brain wave activity with an electroencephalography (EEG) and presenting that data audibly and visually.
Recently, fMRI machines have used blood oxygenation levels of precise locations in the brain to collect the data about brain changes, This data is then fed back visually to the individual.
Once information is fed back, it is used either through conscious awareness to regulate state change in the brain, or unconsciously by the automatically functioning brain to improve habitual activity that is either ineffective or inappropriate for current needs.
There is debate amongst neurofeedback experts about the degree to which change is created on a conscious or on an unconscious level. Experts do agree that the essential aspect for change is that the feedback happens in real time.
Is biofeedback the same as neurofeedback?
Neurofeedback devices were developed from the discoveries made with biofeedback. Namely, that an individual can gain some control over involuntary functions and improve one's health by consciously intervening when the biofeedback tool noted certain changes in the body's state.
Common uses for biofeedback are to alter migraine pain, to manage general pain, and to manage stress. An example of biofeedback training is tracking your heart rate through a device and then using deep breathing to lower your heart rate by activating the parasympathetic nervous system, which controls the relaxation response and lowering heart rate.
With the development of neurofeedback, neuroscientists discovered that measuring and tracking the brain’s electrical activity, or brainwaves, was meaningful to help identify unhealthy brain activity and providing feedback about those patterns could be used as manage and impact brain performance.
Mental and emotional experiences are created by neurochemicals and electrical impulses or brain waves. When an individual performs tasks, those tasks are reflected in brainwave activity. They can be tracked when EEG sensors are attached to the head. For example, when an individual is performing a mental task such as problem-solving, Beta waves are dominant. When falling asleep, the slower Theta waves take over.
By tracking brain waves, we can see if the brain is not producing the correct brain wave activity to accomplish a task. For example, struggling to focus when trying to do school work or worrying when it’s time to fall asleep are signs that the brain is stuck in habitual patterns and are not in alignment with current needs.
Only recently has the speed of computing technology reached a level that could support neurofeedback devices because the brain performed functions much faster than old computers could track. Now, sophisticated hardware that can run at the speed of the brain’s computing and, therefore, track its functions in real-time.
Although neurofeedback has been called biofeedback, or EEG biofeedback, these two terms are different in their scope. Biofeedback involves measuring data from the whole body, while neurofeedback targets changes in the brain. Neurofeedback systems use a device to precisely measure brain changes, most commonly through monitoring brainwave frequencies. This alerts the individual to unconscious changes in the brain.
A significant difference between biofeedback and neurofeedback is how the client or trainee interacts with the equipment. With biofeedback devices. the user needs to engage their awareness and consciously shift a behaviour when alerted by the device. For example, in biofeedback, the individual may be alerted to an increase in heart rate. He would then use this information to actively practice deep breathing, which signals the parasympathetic nervous system to lower his heart rate.
With most neurofeedback devices, the theory is that the majority of the work is done by the unconscious part of the brain. The feedback from the brain wave activity is happening at the speed of microseconds. So, while the individual may be willfully doing something with the feedback, the automatic functioning brain - which can compute at the speed of microseconds - is using the feedback in real-time to shift its functioning.
Similarities between neurofeedback and biofeedback
Both systems rely only on real-time data about changes in the body. For example, muscle tension or the micro-shift in brainwave patterns.
A second commonality is the goal of shifting from physiological dysregulation to regulation. The most common dysregulated state is the body being in a habitual stress response. The stress response is only supposed to be activated when the body is in a state of immediate danger. It is also known as the fight, flight or freeze response.
It is well known in the medical community that a chronic stress response lowers immunity and is connected with many degenerative illnesses such as heart disease, sleep disorders, anxiety and depression.
Regulation is bringing the body's functioning into a greater alignment with its current needs, in the current environment. Examples of regulation when the body is in a safe environment are a slower heart rate, relaxed muscle tone, deeper breathing or in the case of brainwave activities, an increase in alpha waves.
The current thinking in neurology is that the brain is designed as an information processing centre with the goal to make decisions accurately and most efficiently. When it is alerted to its own inefficiencies, the brain will automatically change its behaviour.
What is Neurofeedback Training?

Neurofeedback training is another term for neurofeedback. It is the process of learning that happens over a series of neurofeedback sessions. Neurofeedback is not a single event because the process of change in the brain happens over time and with repetition.
What can be trained? The brain makes most of its decisions about internal body needs and external environmental needs unconsciously and automatically. Many of those decisions are habitual. Some are constructive and some are not. An example of an unconstructive habit is when someone yells in anger and then says, “I didn’t mean to do that. I just found myself yelling.”
That reactivity is a decision made by the brain on an unconscious level. It is an automatic reaction that most often is not the most appropriate or effective response to the current situation.
Through neurofeedback training, the individual learns to identify and change how it automatically reacts. With anything that is a habit, repetition of the new behaviour over a period of time is necessary to establish a new pattern.
How Does Neurofeedback Work?
Since its inception in the 1970s, neurofeedback machines have worked by measuring the real-time activity of the brain, most frequently the electrical activity, or voltage, as measured in Hertz. More recently, MRI neurofeedback that measures oxygen-level changes in the blood to record neural activity have been developed.
EEG neurofeedback places sensors on the scalp and through the use of conductive paste the brain wave activity is collected and sent to an amplifier that changes the voltage into numbers. Those numbers are then sent into a computer device. The computer is installed with software that has mathematical formulations to take the brain activity numbers and translate them into brainwave frequencies, such as Alpha, Beta, Theta, etc. They are ranges of electrical activity associated with different states. For example, Theta frequencies are active when people sleep, and Alpha brain waves occur when they are doing mental tasks.
Different neurofeedback software uses proprietary mathematical formulas to compute the meaningful change in the brain. Electrical impulses travel along the brain’s neurons at varying speeds but can reach 270 miles per second. At this speed, the software would then use auditory and/or visual cues to alert the individual to a change in the brain.
Neurofeedback Video - What Happens in a NeurOptimal Training Session
In this video, Natalie Baker, Advanced NeurOptimal® Neurofeedback trainer and founder of Neurofeedback Training Co. answers the question: "How does neurofeedback work and what happens in a session?"
What Are the Different Neurofeedback Devices
There are two broad categories of neurofeedback devices: linear, also called protocol-based, and Dynamical also called non-linear.
Linear/Protocol Neurofeedback
Linear neurofeedback was the first generation of devices and is called EEG biofeedback systems. They work by having a neurofeedback trainer first take a map of the brain’s electrical patterns. This map allows the trainer to analyze brain activity. For example, looking to see if their Theta brainwaves are low or Alpha too high in comparison with the patterns of a healthy brain. This mapping is called a qEEG- Qualitative Electroencephalography. Recorded electrical activity of the brain is used to generate a map of brain function.
The map is then used as a reference point for the trainer to set protocols to help the brain to migrate towards normal and healthier brain wave patterns. When a brain map is not available, the clinician may use a diagnosis such as ADHD or anxiety to set the protocols.
Brainwave lengths represent measurements of the brain's electrical voltage, which is translated through mathematics into different frequencies. These frequencies have names, such as Theta, Beta, or Alpha, and are associated with different brain functions or states.
For example, based on your brain map, the clinician might assess that a client has too much Delta wave activity and not enough Alpha wave activity. She will create protocols to help the brain shift in those frequencies and will use client self-reports and mapping results to assess progress from session to session. A series of sessions will bring the client closer to optimal brain wellness.
There are a number of devices on the market, including EEGer, Cygnet, Lens, Brainasium, LoReta, and BrainPaint. Except for Cygnet, all require a brain map assessment or diagnosis before training can begin.
With linear brain training, a client relies on the skills of the clinician, who establishes a protocol program and adjusts it over a series of sessions. Errors in adjusting frequencies- i.e. over or under the training of different frequencies- can create side effects. The skill of the clinician is very important to consider with linear neurofeedback.
Non-linear/Dynamical Neurofeedback
The second generation of neurofeedback devices arose as the speed of computing power approached the speed of the brain’s processing. The design of this system is referred to as non-linear due to the mathematical formula used, which mirrors how the brain naturally creates change. The brain’s method of change and improvement is a non-linear systemic approach.
What is a linear system versus a non-linear system? Anything that functions with 100% predictability is a linear system. An example of a non-linear system of change is the weather. We understand that winter leads to spring, summer and fall (linear system) but it doesn’t do so with a predictable pattern of temperature increase and decrease (non-linear). Snowfall in April does not mean that we are heading back to winter!
The brain also changes in a non-linear pattern and the mathematical formulation for the software of non-linear neurofeedback mirrors this pattern. Specifically, the software looks at the brain’s electrical activity or voltage and determines state change by factoring in the changes in duration, amplitude, and frequencies over time.

Another significant difference with non-linear neurofeedback is that it does not require the trainer to set protocols. Because the speed of computing has approached brain speed, the dynamical software interacts with the brain in real-time to give it feedback so that the individual’s brain can register its own state changes and shift anything that is not optimal.
The software takes hundreds of data points from the electrical activity measured by the EEG sensors per second. The device then uses micro-interruptions in music that is playing while the training session is running.
Hearing is the main sense perception that the brain uses to detect changes in the environment. The precisely-timed interruptions act as an alert system telling the individual brain to pay attention to two sets of information: what is happening externally in the environment and what is happening internally in the body.
The training is giving this feedback thousands of times per session. The individual brain can then use this feedback to see its own automatic choices or habits and then decide if it wants to change those patterns.
The theory behind nonlinear neurofeedback training is that over the period of training sessions the process of learning which takes place results in the most efficient and effective use of energy by the brain to respond to current environmental needs. This process of gathering current data replaces maladaptive habitual responses. Once the brain has learned this new pattern of assessing needs, the individual notices changes in mental and emotional reactions.
Currently there is only one non-linear, dynamical neurofeedback system on the market, NeurOptimal®, made by Zengar Institute.
Microcurrent Stimulation Neurofeedback
Although not a technically feedback system, microcurrent stimulation devices are often called neurofeedback. Microcurrent stimulation devices work by sending a mild stimulation to the cranial nerve.
The FDA just approved the first device, called Monarch eTNS, for the treatment of Attention Deficit Hyperactivity Disorder (ADHD).
What Is Neurofeedback Used For?
The uses of neurofeedback vary widely. This is possible because the brain is involved in much of the body’s functioning so many areas can improve from neurofeedback training.
The two broad areas are specific concerns and overall wellness.
The neurofeedback systems that are either FDA-approved as Medical Devices or are in the process of being researched for that designation, specifically target symptom relief from various disorders such as anxiety, depression, PTSD and ADHD.
It is the responsibility of the manufacturer to register the equipment with the FDA to review as either a Class 2 Medical Device or as a General Wellness Device. The determination depends on what benefit the manufacturer wants to make from the device specifically in this category and whether it is for treatment or training purposes.
The neurofeedback systems that are designated by the FDA as a General Wellness Device are considered safe to be used for overall wellness purposes by the general public and do not require supervision by a healthcare provider. They are brain training, not treatment devices.
Neurofeedback Benefits for Wellness
The benefits of neurofeedback for wellness purposes include areas of functioning controlled by the stress response. Specifically, those areas include sleep management, emotional regulation, and mental fitness, such as the ability to focus and concentrate when required.
Related:
Learn The Benefits of Neurofeedback
Learn more about the benefits
- Get Better Sleep in a Natural Way
- Enhance Learning Capabilities With NeurOptimal
- How Do I Train My Brain To Focus
- How to Cope with Performance Anxiety
Neurofeedback Reviews
Read testimonials from clients who have tried neurofeedback training with the NeurOptimal System
“Neurofeedback is utterly fascinating! The effects lie beyond conscious control, yet within the field of perceptible awareness. I walk out synchronized and in step, every time. I look forward to my sessions because I know I’m going to have a good night’s sleep when I get home. This type of work is a must for any healer or meditator.”
– John, 16 Sessions
"My mood has lightened and my focus has been enhanced. I am an artist and have struggled with completing projects or making headway on projects for a long time especially since having a child. I have come back into myself and started to make progress with my work."
– Maria, 30 Sessions
“My 9-year-old daughter have done 6 sessions and I am happy to report that a week after her sessions she said to me that she never wanted to watch a scary movie again because for the first time in her life she wasn’t afraid.“
- Rebecca, 6 neurofeedback sessions for her child



How Much Does Neurofeedback Cost?
Neurofeedback pricing will vary depending on whether you are doing in-office sessions, a home rental, or purchasing a system. With protocol neurofeedback, you will need to first have a QEEG brain map. The cost ranges from $500-3,000. The proceeding neurofeedback sessions range from $150-300 each.
When doing Dynamical neurofeedback, of which NeurOptimal® is the only system on the market, it does not require brain mapping. The mapping is integrated into the software, so the first session includes a full neurofeedback session. The cost for an in-person session ranges from $100-250 per session. Renting a neurofeedback system for home use is the third option. The prices are lower per session ranging anywhere from $20-100 per session. Most rentals are structured on a monthly basis rather than per session, so the cost can range from $700 to the thousands.
Most systems are not available to purchase for home use, however; the NeurOptimal system is and the cost to purchase a neurofeedback system ranges from $7500-11,000.
RELATED POSTS
READ ALSO FROM OUR BLOG:
Neurofeedback: Unlock Your Child's Ability to Focus
Welcome to our latest blog post, where we delve into the world of neurofeedback, a groundbreaking
READ ALSO FROM OUR BLOG:
Discovering Neurofeedback: A Journey to Optimal Brain Health
Often, when someone is introduced to the concept of neurofeedback, it's a new and unfamiliar